ATM515 Aerosol Physics

Lecture 2: Overview of aerosols and research issues

1

Overview

Aerosol and aerosol properties

Importance of atmospheric aerosols

Definition: Aerosols are suspended particulate matter (liquid or solid) – suspended in a fluid. In terms of atmospheric aerosols, this fluid is <u>air</u>.

Example of aerosols or particles in the atmosphere:

Dust/Sand

Sea salt

Smoke (black carbon, primary organic carbon, sulfate,...)

Pollen

Fungus, spores, bacteria

Water droplets, fog

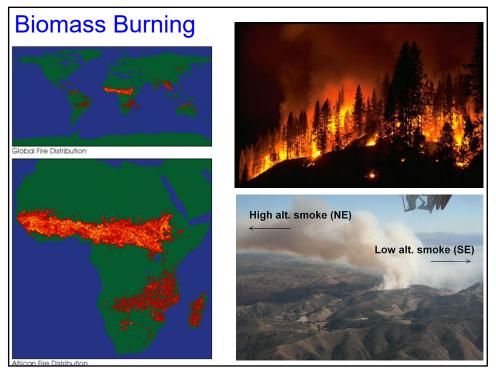
Volcano ash

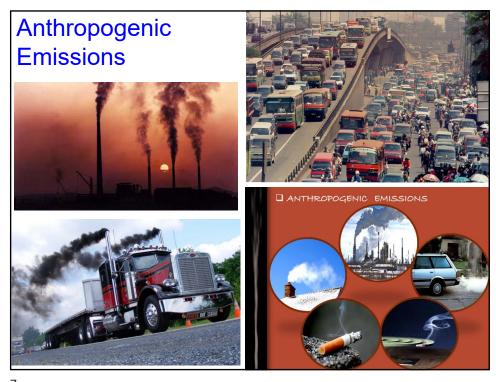
Sulfate aerosol, nitrate, ammonium

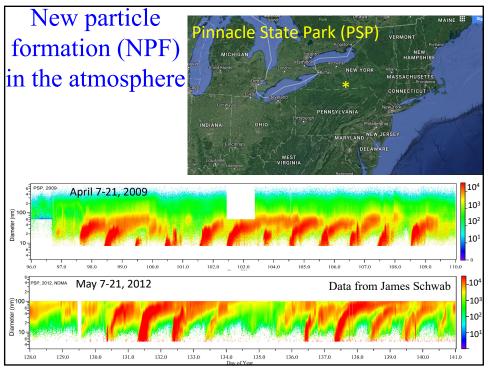
Secondary particles

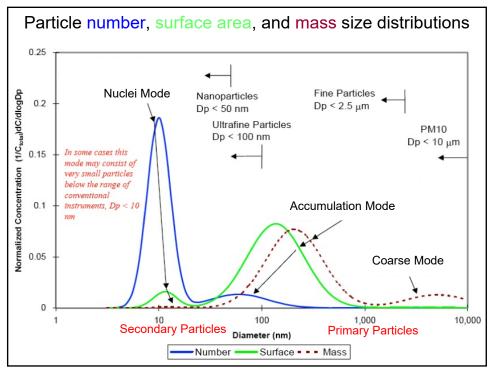
Micro-plastics

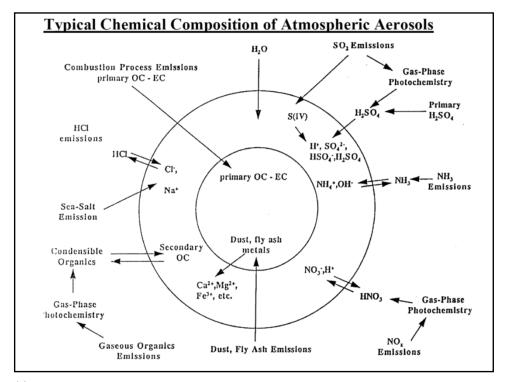
Metal particles

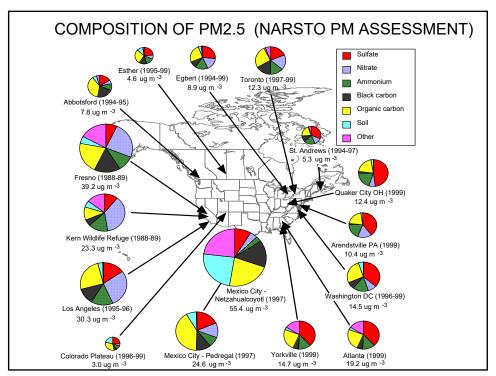

Non-tailpipe particles

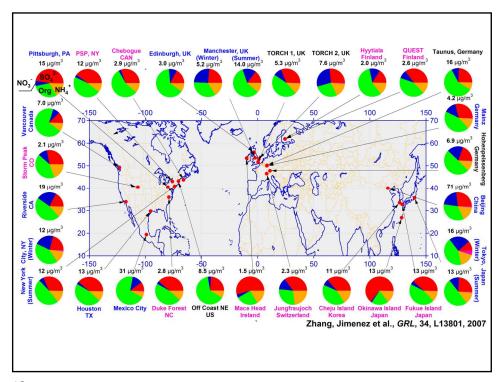

3


Δ

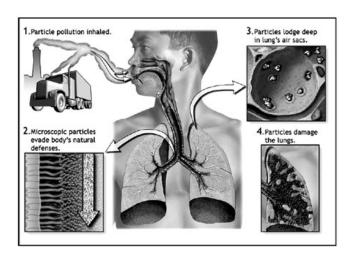

/




Aerosol properties:


- > Size,
- > Composition, Mixing State,
- > Phase (liquid or solid), Shape,
- Mass Concentrations, Number Concentrations,
- Surface Area,
- Optical properties,
- Efficiency to act as cloud condensation nuclei or ice nuclei,
- **>** ...

9

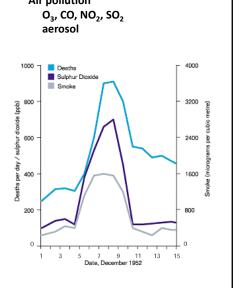


II. Importance of atmospheric aerosols

- 1. Particles and health
- Effects of aerosols on chemistry, radiation, cloud, climate and weather
- 3. Other emerging research topics related to particles

1. Health Impacts of Atmospheric Aerosols

15



Because of its very small size, particle pollution gets right through the nasal passage, past the trachea and deep into the lungs. The smallest of the particles can even enter the bloodstream via the lungs.

Air pollution and human health 1952: the "London smog disaster" Air pollution O₃, CO, NO₂, SO₂

17

1950s: Los Angeles smog

Buildings in Los Angeles' Civic Center are barely visible from 1st and Olive Street on September 14, 1955. (Los Angeles Times via Getty Images)

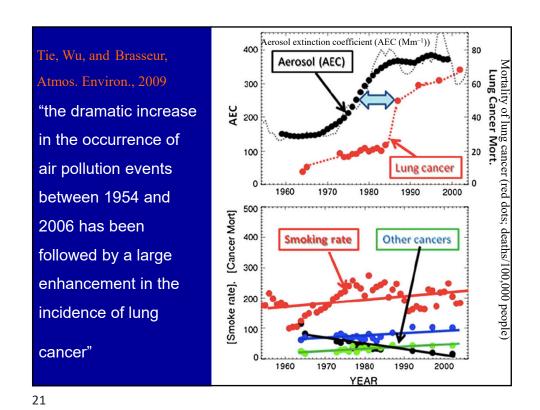
As many as 6,000 people attended a meeting to protest smog levels in Pasadena in 1954. (Allan Grant/The Life Picture Collection via

task force" supplying air from outside Los Angeles in 1958. (Bettmann Archive via

1950s-1960s: New York City smog

The 1966 smog wasn't the first time that New Yorkers were forced to brave dangerous smog. The infamous smog emergency of 1953 also took place in

A photo of the 1966 New York City smog as seen from the Empire State Building on November 24, 1966 at 8:30 a.m. The photo, taken by Neal Boenzi, was published on the front page of *The New* York Times.


19

Air Pollution Linked to 1.2 Million Premature Deaths in China in 2010

Aly Song/Reuters

Shanghai in January. Researchers said the toll from China's pollution meant the loss of 25 million healthy years in 2010.

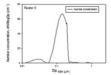
Association between size-segregated particles in ambient air and acute respiratory inflammation Yiqun Han ^{a,*}, Tong Zhu ^{a,**}, Tianjia Guan ^a, Yi Zhu ^a. Iun Liu ^a. Yunfang Ii ^b. Shuna Gao ^b. Fei Wang ^b Huimin Lu ^b, Wei Huang ^c Science of the Total Environment 565 (2016) 412–419 College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing 100871, China The Center for Diseases Control and Prevention of Huangpu District, Shanghai, China College of Occupational & Environmental Health, School of Public Health, Center of Health Sciences, Peking University, China HIGHLIGHTS GRAPHICAL ABSTRACT FENO, a biomarker of respiratory inflammation, was positively associated with 5-10 nm almost all ambient air pollutants. 10-20 nm The significant associations occurred 20-50 nm within hours. The association between FE_{NO} and fine 100-200 nm particulates depended on particle size, 200-560 nm Aitken-mode particles have the most robust association. PNC_nuc PNC_ait PNC_acc PNC_UFP PNC -20 Percent Change in FENO (%)

Contents lists available at ScienceDirect

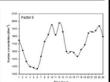
Science of the Total Environment

Short communication

Association of urban particle numbers and sources with lung function among children with asthma or allergies


Ya-Ru Li a,1, Li-Ting Feng b,1, Bing-Yu Chen c,d, Ho Kim e,f, Seung-Muk Yi e,f, Yue Leon Guo a,c,d,*, Chang-Fu Wu a,b,g,

- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 10055, Taiwan
- msaunse oy осмирмиона meuacine ana maustriai riygene, Conege of rublic Health, National Taiwan University, 17 Xu-Zho Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan Department of Environmental and Occupational Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan National Taiwan University Hospital, Taipei, Taiwan Department of Environmental Part of P
- Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan


HIGHLIGHTS

- numbers and sources were used for examining particle-induced health effects.
- condary particle is m for deterioration in childhood lung
- Analyses that rely on only particle number may underestimate risks of particles.

GRAPHICAL ABSTRACT

23

Trees et al., Annals of the American Thoracic Society, 2024

Ultrafine Particles and Hospital Visits for Chronic Lower Respiratory Diseases in New York State

lan Trees¹, Fangqun Yu³, Xinlei Deng¹, Gan Luo³, Wangjian Zhang⁴, and Shao Lin^{1,2}

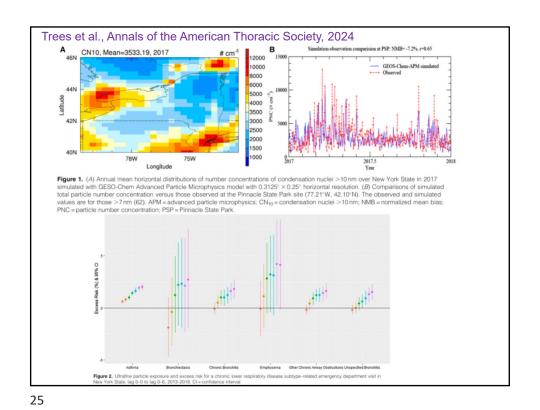
¹Department of Environmental Health Sciences and ²Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York; ³Department of Almospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York; and ⁴Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China

ORCID IDs: 0000-0003-4747-6017 (I.T.); 0000-0001-8862-4835 (F.Y.); 0000-0001-8129-6007 (X.D.); 0000-0002-9588-7008 (G.L.); 0000-0001-9655-6385 (W.Z.); 0000-0002-5535-7504 (S.L.).

Abstract

Rationale: Exposure to particulate matter is associated with various adverse health outcomes. Ultrafine particles (UFPs; diameter <0.1 µm) are a unique public health challenge beca of their size. However, limited studies have examined their impacts on human health, especially across seasons and demographic characteristics.

Objectives: To evaluate the effect of UFP exposure on the risk of visiting the emergency department (ED) for a chronic lower respiratory disease (CLRD) in New York State in 2013-2018.


Methods: We used a case-crossover design and conditional logistic regression to estimate how UFP exposure led to CLRDrelated ED visits. GEOS-Chem Advanced Particle Microphysics, a state-of-the-art chemical transport model with a size-resolved particle microphysics model, generated air pollution simulation data. We then matched UFP exposure estimates to geocoded health records for asthma, bronchiectasis, chronic bronchitis, emphysema, unspecified bronchitis, and other chronic airway obstructions in New York State from 2013 through 2018.

In addition, we assessed interactions with age, ethnicity, race, sex, meteorological factors, and season.

Results: Each 1-(interquartile range [IOR]) increase in UFP exposure led to a 0.37% increased risk of a respiratory-related ED visit on lag 0–0, or the day of the ED visits, (95% confidence interval [CI], 0.23-0.52%) and a 1.81% increase on lag 0-6, or 6 days before the ED visit, (95% CI, 1.58–2.03%). The highest risk was in the emphysema subtype (lag 0–5, 4.18%; 95% CI, 0.16–8.37%), followed by asthma (lag 0–6, 2.00%), chronic bronchitis (lag 0–6, 1.78%), other chronic airway obstructions (lag 0-6, 1.60%), and unspecified bronchitis (lag 0-6, 1.49%). We also found significant interactions between UFP health impacts and season (Fall, 3.29%), temperature (<90th percentile, 2.27%), relative humidity (>90th percentile, 4.63%), age (children aged <18 yr, 3.19%), and sex (men, 2.06%) on lag 0-6.

Conclusions: In this study, UFP exposure increased CLRDrelated ED visits across all seasons and demographic characteristics, yet these associations varied according to various factors, which requires more research.

Keywords: air pollution; particulate matter; COPD; asthma

Lin et al., Environmental Pollution, 2022

Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations[☆]

Shao Lin a,b,*, Ian Ryan a, Sanchita Paul c, Xinlei Deng a, Wangjian Zhang d, Gan Luo e, Guang-Hui Dong ¹, Arshad Nair ^e, Fangqun Yu ^{e,}

- nental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
- "Department of Environmental Health Sciences, University at Albany, State University of New York, Renuselaer, NY, USA

 "Department of Epidemiology and Biostatistics University at Albany, State University of New York, Renuselaer, NY, USA

 "Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA

 "Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangshou, China

 "Annospher's Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA

 "School of Public Health, Sun Yat-sen University, Guangshou, China

ARTICLE INFO

ABSTRACT

Keywords: Ultrafine particles Particle surface area Air pollution exposure Cardiovascular admission Lag effect erable population

While the health impacts of larger particulate matter, such as PM_{10} and $PM_{2.5}$, have been studied extensively, research regarding ultrafine particles (UFPs or $PM_{0.1}$) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013–2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art tenting an CVD scees who resided in V15. OFF simulation data from GEOS-Cateni-ryst, a state-ori-rest chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lago-lago-6: ERs% (95% CP%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7-1.2), and delayed and prolonged ERs%: 0.1–0.3 (95% CIs: 0.1–0.5) between UFPnc and CVDs (lag0-3–lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5–17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.

Nair et al., Environmental Research, 2023

Environmental exposure disparities in ultrafine particles and PM2.5 by urbanicity and socio-demographics in New York state, 2013-2020

Arshad Arjunan Nair a, , Shao Lin b, , Gan Luo , Ian Ryan , Quan Qi , Xinlei Deng , Fangqun Yu 49

- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
 Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA
 Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
 Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA

ARTICLEINFO

Keywords: Air quality Fine particulate matter Ultrafine particles Environmental justice Public health inequalities

ABSTRACT

Background: The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter \leq 0.1 μm), a key subcomponent of fine aerosols (PM $_{2.5}$ mass concentrations of PM \leq 2.5 μm), have not been well studied.

Objective: To quantify and compare the aerosol pollutant exposure disparities for UFP and $PM_{2.5}$ by socio-demographic factors in New York State (NYS).

Methods: Ambient atmospheric UFP and PM25 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020.

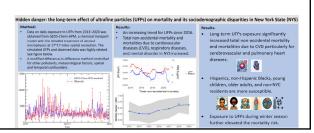
Results. The average NYS resident was exposed to 4451 #-cm⁻³ UFP and 7.87 µg·m⁻³ PM_{2.5} in 2013–2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM_{2.5}: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for $PM_{2.5}$ have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for

Discussion: We identified large disparities in aerosol pollution exposure by urbanization level and socio demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM_{2.5} than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM_{2.5} across various income strata and levels of urbanicity.

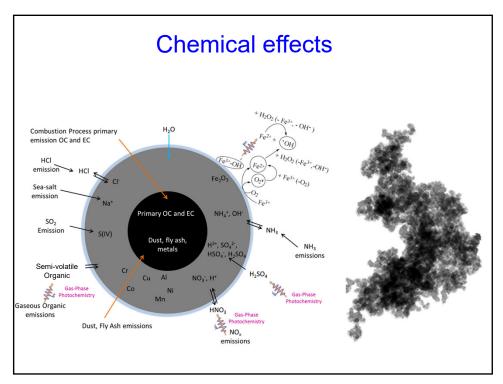
27

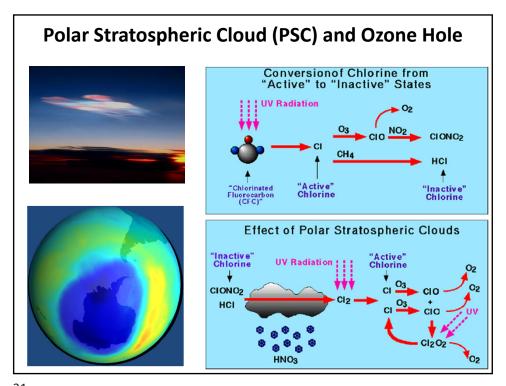
Qi et al., Journal of Hazardous Materials, 2024

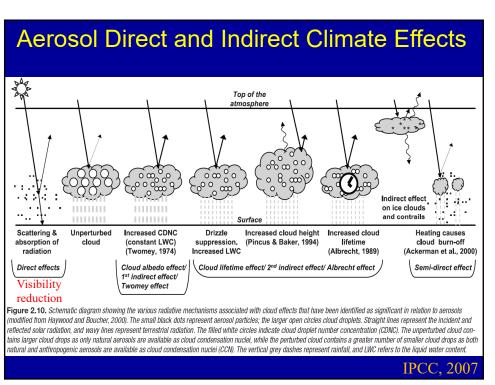
Hidden danger: The long-term effect of ultrafine particles on mortality and its sociodemographic disparities in New York State

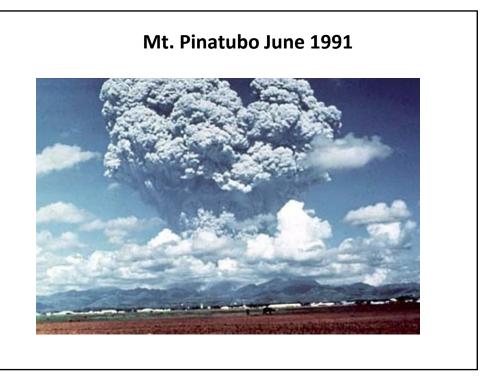

Quan Qi ^a, Fangqun Yu ^b, Arshad A. Nair ^b, Sam S.S. Lau ^{c,d}, Gan Luo ^b, Imran Mithu ^e, Wangjian Zhang f, Sean Li 8, Shao Lin h,i,

- ^a Department of Economics, University at Albany, State University of New York, Albany, NY, USA
 ^b Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
- c Research Centre for Environment and Human Health & College of International Education, School of Continuing Education, Hong Kong Baptist University, Hong Kong,
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, China
- Community, Environment and Policy Division, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Rausser College of Natural Resources, University of California, Berkeley, CA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA

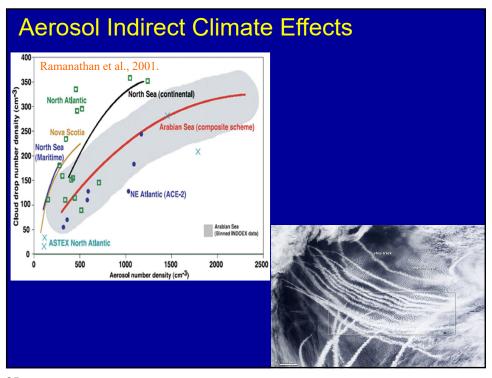

HIGHLIGHTS

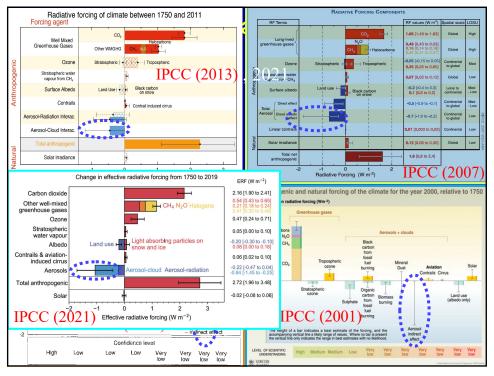

- Long-term UFPs exposure significantly increased total non-accidental mortality.
- Mortalities for cardiovascular diseases were associated with UFP exposure.
- · Hispanics and non-Hispanic Blacks experienced higher UFP-related mortalities.
- Young children, older adults, and non-NYC residents had higher UFP-Mortality risks.
- · Exposure to UFPs during winter season further elevated the mortality risk.

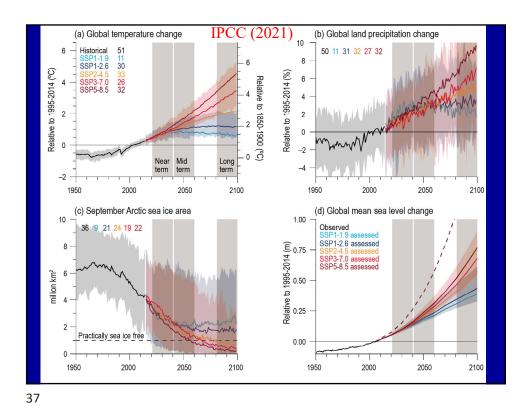

GRAPHICAL ABSTRACT



2. Effects of aerosols on chemistry, radiation, cloud, climate and weather

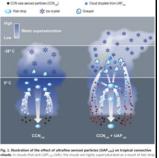




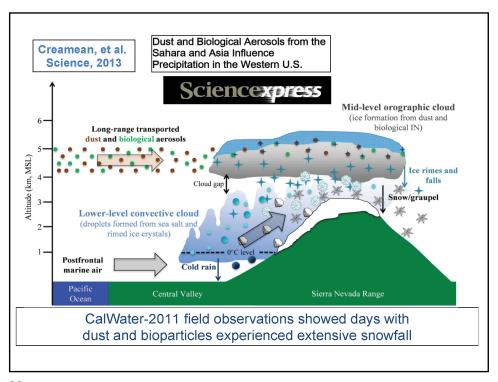


Fan et al., Science **359**, 411–418 (2018)

26 January 2018


RESEARCH ARTICLE

ATMOSPHERIC PHYSICS


Substantial convection and precipitation enhancements by ultrafine aerosol particles

Jiwen Fan,¹* Daniel Rosenfeld,² Yuwei Zhang,^{1,3} Scott E. Giangrande,⁴ Zhanqing Li,^{3,5} Luiz A. T. Machado,⁶ Scot T. Martin,⁷ Yan Yang,^{1,8} Jian Wang,⁴ Paulo Artaxo,⁹ Henrique M. J. Barbosa,^{9,10} Ramon C. Braga,⁶ Jennifer M. Comstock,¹ Zhe Feng,¹ Wenhua Gao, ^{1,11} Helber B. Gomes,¹² Fan Mei,¹ Christopher Pöhlker,¹³ Mira L. Pöhlker,¹ Urich Pöschl,^{13,14} Rodrigo A. F. de Souza¹⁵

Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP_{SQ}) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP_{SQ} from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.

(s. L. Bucherion et the affect of disorbie served particles (UM-_{col}) as trippid connective blocks. In cloud for this SUM-_{col} (CH). The collective is relightly secretarized and as a result of the Chris Christian of the Christian of the Christian and C

High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes

A. Khain *, B. Lynn, J. Shpund

Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Atmospheric Research 167 (2016) 129-145

ABSTRACT

Recent studies have pointed to the possible sensitivity of hurricanes to aerosols via aerosol effects on microphysical and thermodynamic processes in clouds. Hurricane Irene, occurring in August 2011, is an excellent case study for investigating aerosol effects on tropical cyclone (TC) structure and intensity: it moved northward along the eastern coast of the United States, and weakened much faster than was predicted by the National Hurricane Center. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. In this study, we simulate Hurricane Irene with 1-km grid spacing using Spectral Bin Microphysics (SBM) and various bulk microphysical schemes in WRF. Simulations with SBM showed that aerosols penetrating the eyewall of Irene from the Saharan Air Layer (SAL) led to an intensification of convection at Irene's eyewall and to a deepening of the hurricane. When Irene moved along the eastern coast of the United States, continental aerosols led to an intensification of convection at Irene's periphery, which interfered with the re-forming of the inner eyewall and to Irene weakening. Sensitivity tests using different "bulk" microphysics schemes indicated a large dispersion of simulated minimum pressure and maximum wind between different simulations. This showed that the simulated hurricane intensity was very sensitive to microphysical processes. Moreover, in consequence,

Geophysical Research Letters

RESEARCH LETTER

10.1002/2015GL064479

Key Points

- Aerosols contribute to flooding by "aerosol-enhanced conditional instability"
- Reducing pollution (particularly BC) in the Sichuan Basin mitigates floods
- Coupling aerosols with meteorology may improve weather forecasts

Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China

Jiwen Fan¹, Daniel Rosenfeld², Yan Yang^{1,3}, Chun Zhao¹, L. Ruby Leung¹, and Zhanqing Li^{4,5}

¹ Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA, ² Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel, ³ Chinese Academy of Meteorological Sciences, Beijing, China, ⁴Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, Maryland, USA, ⁵ State Key Laboratory of Earth Surface Processes and Resource Ecology and Joint Center for Global Change Studies. Beilina Normal University. Beilina. China

Key Points:

- Aerosols contribute to flooding by "aerosol-enhanced conditional instability"
- Reducing pollution (particularly BC) in the Sichuan Basin mitigates floods
- Coupling aerosols with meteorology may improve weather forecasts

41

J Atmos Chem DOI 10.1007/s10874-015-9300-x

2015

Sensitivity of convection to observed variation in aerosol size distributions and composition at a rural site in the southeastern United States

T. L. O'Halloran • J. D. Fuentes • W. K. Tao • X. Li

aerosol composition over short time scales. Variations in the aerosol size distribution and composition resulted in substantial variation in the total number of cloud condensation nuclei (CCN) produced in the four case studies. Cases with high CCN concentrations developed larger, more vigorous clouds with more precipitation generated by both warm and cold rain processes. Greater numbers of drops were propelled aloft and formed an extensive ice anvil that produced a large area of stratiform rain. Convection was enhanced by increasing aerosols despite decreases in precipitation efficiency. In contrast, lower CCN concentrations developed smaller clouds with suppressed cold rain processes and less total precipitation. The relatively

ATMOSPHERIC SCIENCE

Substantial global influence of anthropogenic aerosols on tropical cyclones over the past 40 years

Hiroyuki Murakami^{1,2}*

Over the past 40 years, anthropogenic aerosols have been substantially decreasing over Europe and the United States owing to pollution control measures, whereas they have increased in South and East Asia because of the economic and industrial growth in these regions. However, it is not yet clear how the changes in anthropogenic aerosols have altered global tropical cyclone (TC) activity. In this study, we reveal that the decreases in aerosols over Europe and the United States have contributed to significant decreases in TCs over the Southern Hemisphere as well as increases in TCs over the North Atlantic, whereas the increases in aerosols in South and East Asia have exerted substantial decreases in TCs over the western North Pacific. These results suggest that how society controls future emissions of anthropogenic aerosols will exert a substantial impact on the world's TC activity.

43

JGR Atmospheres

<u></u>

RESEARCH ARTICLE

10.1029/2024JD041600

Key Points:

- Aerosols of different sizes and concentrations have contrasting effects on microphysics and wind intensities of a developing vortex
- Coarse aerosols initially dampen vortex acceleration; fine/ultrafine aerosols boost it first but later weaken it more than coarse aerosols
- It more than coarse aerosols
 All aerosols hold promise for intervention, but technological limits impede the generation of the necessary volume of coarse aerosols

Supporting Information:

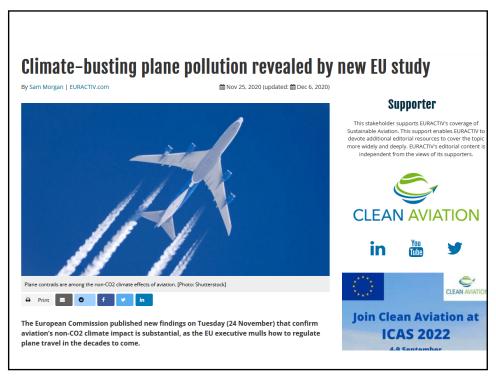
Supporting Information may be found in the online version of this article.

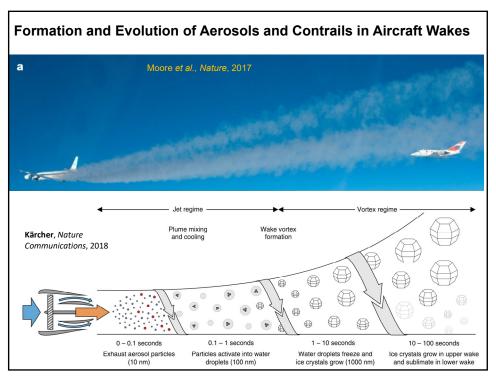
Correspondence to: T. L. Tran,

Citations

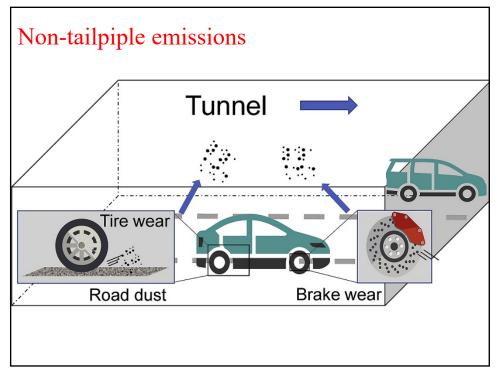
Tran, T. L., Fan, J., Rosenfeld, D., Zhang, Y., Cleugh, H., Hogg, A. M., & Prinsley, R. (2025). Investigation of the sensitivity of tropical cyclogenesis to aerosol intervention. *Journal of Geophysical Research: Atmospheres*, 130, e2024JD041600. https://doi.org/10.1029/

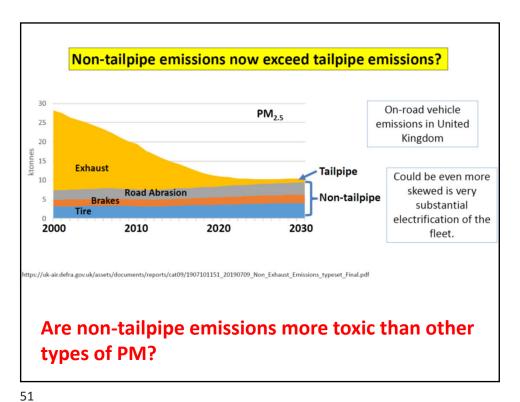
Investigation of the Sensitivity of Tropical Cyclogenesis to Aerosol Intervention

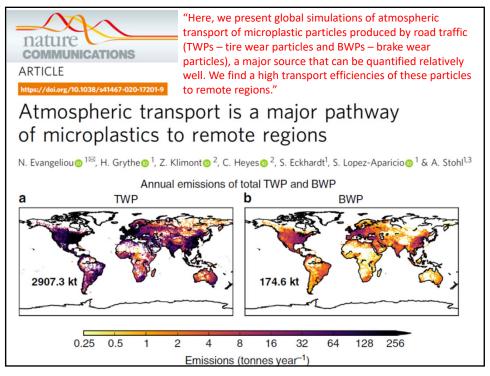

Thao Linh Tran^{1,2} \odot , Jiwen Fan³ \odot , Daniel Rosenfeld⁴ \odot , Yuwei Zhang⁵ \odot , Helen Cleugh¹ \odot , Andrew McC Hogg² \odot , and Roslyn Prinsley¹ \odot

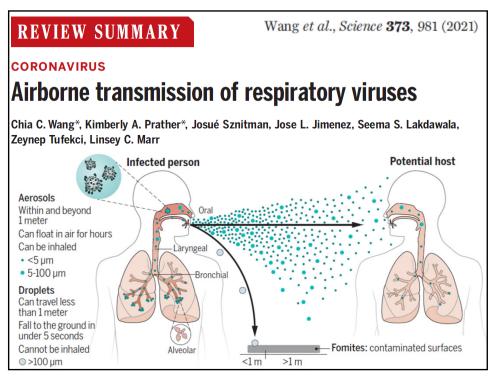

¹Institute for Climate, Energy and Disaster Solutions, Australian National University, Canberra, ACT, Australia, ²Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia, ³Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA, ⁴The Fredy & Nadin Herrman Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel, ⁵Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

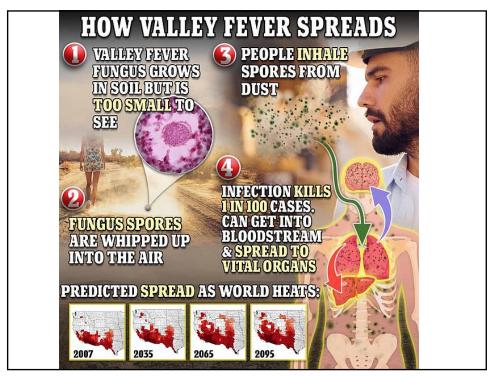
Abstract As risks from tropical cyclones (TCs) are fueled by climate change escalation, there is an urgent need for transformational solutions to complement traditional approaches. Seeding TCs using aerosols can be a promising method to reduce cyclone intensity, supported by theoretical understanding of the microphysical effects of aerosols on TC clouds. The ideal time to intervene effectively in TCs is likely during their initial stage, before TC wind speeds reach their peak. However, studies exploring potential aerosol effects on TC formation remain scarce. This study investigates how a TC embryo responds to the addition of aerosols of varying sizes using the Weather Research & Forecasting (WRF) model coupled with a spectral-bin microphysics model. We found that aerosols of different sizes and concentrations distinctively affect the pre-TC vortex's microstructure and dynamics. Fine and ultrafine aerosols enhance the latent heat of condensation, freezing, deposition, and riming, initially intensifying the vortex. However, this results in enhancement of the cold pool, thereby reducing inflow and surface fluxes, subsequently weakening the vortex. Coarse aerosols produce the opposite effect to that of fine and ultrafine aerosols. Coarse aerosols lead to a slower initial acceleration owing to enhanced warm rain. However, the resulting weaker cold pool is insufficient to effectively reduce the strength of the vortex at the later stage. This study provides critical insights into how aerosols of varying sizes and concentrations modulate the energy cascade and impact the evolution of a TC embryo, laying the groundwork for further research on TC risk management through aerosol intervention.

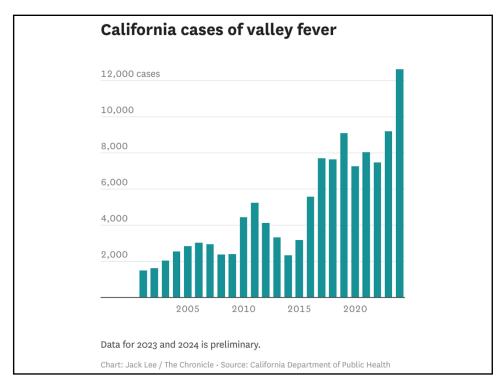

3. Other emerging research topics related to particles

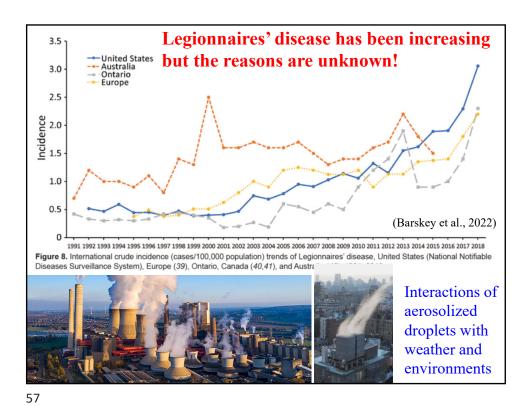


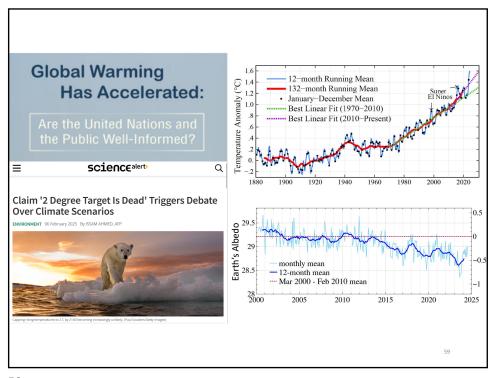


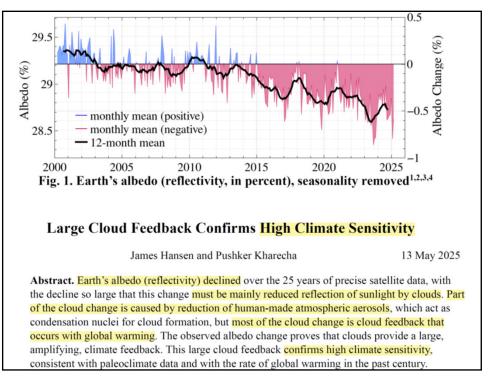




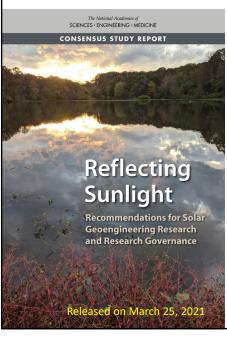




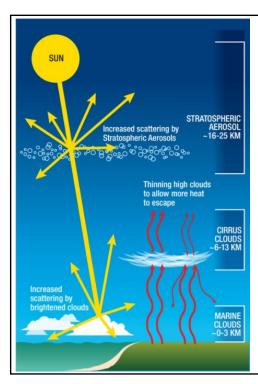




Mysteriously rapid rise in Legionnaires' disease incidence likely linked to declining sulfur dioxide


Fangqun Yu^{n,1,2}, Arshad Arjunan Nair^{n,1,2}, Ursula Lauper^b, Gan Luo^{*}, Jason Herb^{*}, Matthew Morse^b, Braden Savage^b, Martin Zartarian^b, Meng Wang^{*}, and Shao Lin^d

*Atmospheric Science Research Center, University at Albany, State University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University at Albany, State University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University of New York, Albany, NY 12285, *Bureau of Water Supply Protection, New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of Police Health, University of New York, Buffalo, NY 14214, *School of New York


Geo-Engineering

"Given the urgency of the risks posed by climate change, the U.S. should pursue a research program for solar geoengineering — in coordination with other nations, subject to governance, and alongside a robust portfolio of climate mitigation and adaptation policies, says a new report from the National Academies of Sciences, Engineering, and Medicine. The report emphasizes that solar geoengineering is not a substitute for reducing greenhouse gas emissions."

"The report says the U.S. Global Change Research Program (USGCRP) should lead the effort to establish and coordinate a solar geoengineering research program across federal agencies and scientific disciplines, with funding in the range of \$100 million-\$200 million over the first five years."

61

Discussion:

The importance of understanding aerosols.